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Abstract:  Unsteady boundary layer flow of an incompressible fluid over a stretching surface in the presence of a heat source or sink is 

studied. The unsteadiness in the flow and temperature fields is caused by the time dependence of the stretching velocity and the surface 

heat flux. The nonlinear boundary layer equations are transformed to nonlinear ordinary differential equations containing the Prandt l 

number, heat source or sink parameter and unsteadiness parameter. These equations are solved by applying Fuzzy Adomian technique 

and compared with the existing numerical results obtained by using Shooting with Runge Kutta method. This focuses on solving the 

nonlinear ordinary and partial differential equations using Fuzzy Adomian decomposition method. 

 

IndexTerms - Fuzzy Adomian Decomposition Method ,non-linear ordinary differential equation, ,non-linear partial differential 

equation , Runge Kutta Method. 

  

I. INTRODUCTION 

The study of two-dimensional boundary layer flow due to a stretching surface is important in variety of engineering applications such 

as cooling of an infinite metallic plate in a cooling bath, the boundary layer along material handling conveyers, the aerodynamic 

extrusion of paper and plastic sheets. In all these cases, a study of flow field and heat transfer can be of significant importance since the 

quality of the final product depends on skin friction coefficient and surface heat transfer rate.  

             The problem of heat transfer from boundary layer flow driven by a continuous moving surface is of importance in a number of 

industrial manufacturing processes. Several authors have been analysed in various aspects of the pioneering work of Sakiadis (1961). 

Crane (1970) have investigated the steady boundary layer flow due to stretching with linear velocity.Vleggaar et al. (1977) have analysed 

the stretching problem with constant surface temperature and Soundalgekar et al. (1980) have analysed the constant surface velocity. 

             Perturbation techniques are based on the existence of small or large parameters, the so-called perturbation quantity. 

Unfortunately, many nonlinear problems in science and engineering do not contain those kinds of perturbation quantities. Therefore, 

many different methods have recently introduced some ways to eliminate the small parameter. One of the semi exact methods which 

do not need small parameters is the Adomian decomposition method. 

Also this method is employed for many researches in engineering sciences. He’s Homotopy perturbation method is applied to 

obtain approximate analytical solutions for the motion of a spherical particle in a plane couette flow Jalaal et al. (1977) Then Jalaal et al. 

(1986) showed the effectiveness of HPM for unsteady motion of a spherical particle falling in a Newtonian fluid. Ghotbi et al. (1997) 

used HPM to approximate the solution of the ratio-dependent predatorprey system with constant effort prey harvesting. Also homotopy 

perturbation method was used for solving nonlinear MHD Jeffery Hamel problem by Moghimi et al. (2000) Recently, Ganji et 

al.(2007) studied the steady-state flow of a Hagen-Poiseuille model in a circular pipe and entropy generation due to fluid friction and 

heat transfer using HPM. 

 

II. FORMULATION OF THE PROBLEM 

                    We consider the flow of an incompressible viscous fluid past a flat sheet coinciding with the plane y = 0, the flow 

being confined to y > 0. Two equal and opposite forces are applied along the x-axis so that the wall is stretched keeping the origin 

fixed. The basic boundary layer equations that govern momentum and energy respectively are 

      
𝜕𝑢

𝜕𝑥
+

𝜕𝑣
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𝜕𝑦
]

2

                                                                           (2.3) 

Subject to the boundary conditions are 

      𝑢𝜔(𝑥) = 𝐶𝑥𝑛,, 𝑣 = 0                                                                                 (2.4) 
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𝑢 → 0, 𝑦 → ∞ 

𝑇 = 𝑇𝜔 𝑎𝑡 𝑦 = 0; 𝑇 → 𝑇∞ 𝑎𝑠 𝑦 → ∞ 
where (x,y) denotes the Cartesian coordinates along the sheet and normal to it, u and v are the velocity components of the fluid in 

the x  and  y directions, respectively, and v is the kinematic viscosity. C and n are parameters related to the surface stretching speed. 

cp and 𝛼  are the specific heat of the fluid at constant pressure and the thermal diffusivity respectively. 

The equation of continuity is satisfied if we choose a stream function ψ(x, y) such that 

𝑢 =
𝜕𝜓

𝜕𝑦
 , 𝑣 =

−𝜕𝜓

𝜕𝑥
 

The mathematical analysis of the problem is simplified by introducing the following dimensionless    similarity variables: 

𝜂 = 𝑦√
𝐶(𝑛+1)

2𝑣
𝑥

𝑛−1

2                      

𝑢 = 𝐶𝑥𝑛𝑓′(𝜂) ,                                                                                   (2.5) 

𝑣 = −√
𝐶𝑣(𝑛 + 1)

2
𝑥

𝑛−1

2 [𝑓 +
𝑛 − 1

𝑛 + 1
𝜂𝑓′] 

Substituting (2.5) into (2.2) and (2.3), we obtain the following set of ordinary differential equations: 

𝑓′′′ + 𝑓𝑓′′ − (𝑓′)2 [
2𝑛

𝑛+1
] = 0                                                             (2.6) 

𝜃′′ + 𝑃𝑟𝑓𝜃′ + 𝑃𝑟𝐸𝑐(𝑓′′)2 = 0                                                          (2.7) 

The boundary conditions (2.4) now become 

𝜂 = 0: 𝑓 = 0, 𝑓′ = 1, 𝜃 = 1                                                                (2.8) 

𝜂 → ∞: 𝑓′ = 0, 𝜃 = 0  

Where the primes denote differentiation with respect to 𝜂 

𝐸𝑐 =
𝑢𝜔

2

𝐶𝑝(𝑇𝜔−𝑇∞)
  is the Eckert number , 𝑃𝑟 [=

𝑣

𝛼
] is the Prandt1 number Further , the constants 𝑇𝜔, 𝑇∞ denote the 

temperature at the wall and at large distance from the wall,respectively. 

III. ADOMIAN DECOMPOSITION METHOD 

To solve the system of coupled ODEs using Adomian decomposition method, 

rearranging (2.6) and (2.7) as follows 

𝑓′′′ = −𝑓𝑓′′ − 𝑓′2 2𝑛

𝑛+1
                                                                          (3.1) 

𝜃′′ = −𝑃𝑟[𝑓𝜃′ + 𝐸𝑐(𝑓′′)2]                                                                  (3.2) 

While  applying the standard procedure of Adomian decomposition method  

Eqs (3.1) and (3.2) becomes 

𝐿1𝑓 = [−𝑓𝑓′′ − 𝑓′2 2𝑛

𝑛+1
]                                                                       (3.3) 

 

𝐿2𝜃 = −𝑃𝑟[[𝑓𝜃′ + 𝐸𝑐(𝑓′′)2]]                                                              (3.4) 

Where 

𝐿1 =
𝑑3

𝑑𝜂3 and inverse operator 𝐿−1
1(. ) = ∫ ∫ ∫ (. )𝑑𝜂𝑑𝜂𝑑𝜂

𝜂

0

𝜂

0

𝜂

0
 and 

𝐿2 =
𝑑2

𝑑𝜂2 and inverse operator 𝐿−1
2(. ) = ∫ ∫ (. )𝑑𝜂𝑑𝜂

𝜂

0

𝜂

0
 

Applying the inverse operator on both sides of (3.3) and (3.4) 

𝐿−1
1𝐿1𝑓 = 𝐿−1

1 [−𝑓𝑓′′ − 𝑓′2 2𝑛

𝑛+1
]                                                         (3.5) 

 

𝐿−1
2𝐿2𝜃 = −𝑃𝑟𝐿−1

2[[𝑓𝜃′ + 𝐸𝑐(𝑓′′)2]]                                                 (3.6) 

Simplify eqs (3.5) and (3.6) we get 

𝑓(𝜂) = 𝜂 +
𝛼1𝜂2

2
+ ∫ ∫ ∫ [−𝑁1(𝑓) − 𝑁2(𝑓)

2𝑛

𝑛+1
]

𝜂

0

𝜂

0

𝜂

0
𝑑𝜂𝑑𝜂𝑑𝜂                                                                 (3.7) 

And 

𝜃(𝜂) = 𝛼2 − 𝜂 − 𝑃𝑟 ∫ ∫ [𝑁3(𝑓, 𝜃) + 𝐸𝑐𝑁4(𝑓)]
𝜂

0

𝜂

0
𝑑𝜂𝑑𝜂                        (3.8) 

Where 𝛼1 = 𝑓′′(0)𝑎𝑛𝑑 𝛼2 = 𝜃(0) are to be determined from the boundary conditions at infinity in (2.8). The non linear terms 

𝑓𝑓′′, 𝑓′2
, 𝑓𝜃′𝑎𝑛𝑑 𝑓′𝜃  can be decomposed as Adomian Polynomials ∑ 𝐵𝑛 , ∑ 𝐶𝑛

∞
𝑛=0

∞
𝑛=0 , ∑ 𝐷𝑛𝑎𝑛𝑑 ∑ 𝐸𝑛

∞
𝑛=0

∞
𝑛=0   as follows 

 

𝑁1(𝑓) = ∑ 𝐵𝑛 =∞
𝑛=0 𝑓𝑓′′                                                                          (3.9) 

𝑁2(𝑓) = ∑ 𝐶𝑛
∞
𝑛=0 = (𝑓′)2                                                                        (3.10) 
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𝑁3(𝑓, 𝜃) = ∑ 𝐷𝑛
∞
𝑛=0 = 𝑓𝜃′                                                                       (3.11) 

 

𝑁4(𝑓, 𝜃) = ∑ 𝐸𝑛
∞
𝑛=0 = (𝑓′′)2                                                                    (3.12) 

 

Where 𝐵𝑛(𝑓0, 𝑓1, … … , 𝑓𝑛), 𝐶𝑛(𝑓0, 𝑓1, … … , 𝑓𝑛) 𝑎𝑛𝑑 𝐷𝑛(𝑓0, 𝑓1, … … , 𝑓𝑛, 𝜃0, 𝜃1, … . , 𝜃𝑛) , 𝐸𝑛(𝑓0, 𝑓1, … … , 𝑓𝑛) are the so called Adomian 

polunomials. In the Adomian decomposition method (1994) f and 𝜃 can be expanded as the infinite series 

𝑓(𝑛) =  ∑ 𝑓𝑛 =  𝑓0 + 𝑓1 + ⋯ + 𝑓𝑚

∞

𝑛=0

+ ⋯ 

 

𝜃(𝜂) =  ∑ 𝜃𝑛 =  𝜃0 + 𝜃1 + ⋯ + 𝜃𝑚
∞
𝑛=0 + ⋯                                             (3.13) 

Substituting (3.9),(3.10),(3.11) and (3.12) into (3.7) and (3.8) gives 

∑ 𝑓𝑛(𝜂)∞
𝑛=0 = 𝜂 +

𝛼1𝜂2

2
+ ∫ ∫ ∫ [− ∑ 𝐵𝑛 −

2𝑛

𝑛+1
∑ 𝐶𝑛

∞
𝑛=0

∞
𝑛=0 ]

𝜂

0

𝜂

0

𝜂

0
𝑑𝜂𝑑𝜂𝑑𝜂                                                      (3.14) 

and∑ 𝜃𝑛(𝜂)∞
𝑛=0 = 𝛼2−𝜂 − 𝑃𝑟 ∫ ∫ [∑ 𝐷𝑛 + 𝐸𝑐 ∑ 𝐶𝑛

∞
𝑛=0

∞
𝑛=0 ]

𝜂

0

𝜂

0
𝑑𝜂𝑑𝜂                                                              (3.15) 

Hence, the individual terms of the Adomian series solution of the equation (2.6)-(2.8) are provided below by the simple recursive 

algorithm 

𝑓0(𝜂) = 𝜂 +
𝛼1𝜂2

2
                                                                                        (3.16) 

 

𝜃0(𝜂) = 1 + 𝛼2𝜂                                                                                             (3.17) 

 

𝑓𝑛+1(𝜂) = ∫ ∫ ∫ [−𝐵𝑛 − 𝐶𝑛]
𝜂

0

𝜂

0

𝜂

0
𝑑𝜂𝑑𝜂𝑑𝜂                                                         (3.18) 

 

𝜃𝑛+1(𝜂) = −𝑃𝑟 ∫ ∫ [𝐷𝑛 + 𝐸𝑐𝐸𝑛]
𝜂

0

𝜂

0
𝑑𝜂𝑑𝜂                                                       (3.19) 

For practical numerical computation , we take the m-term approximation of 𝑓(𝜂)𝑎𝑛𝑑 𝜃(𝑛) as  

𝜙𝑚(𝜂) = ∑ 𝑓𝑛(𝜂)𝑚−1
𝑛=0 and 

Ω𝑚(𝜂) = ∑ 𝜃𝑛(𝜂)

𝑚−1

𝑛=0

 

The recursive algorithms (3.16)-(3.19) are programmed in MATLAB. We have obtained upto 15th term of approximations to 
both 𝑓(𝜂)𝑎𝑛𝑑 𝜃(𝑛). We provided below only first few terms due to lack of space. 
 

𝑓0(𝜂) = 𝜂 +
𝛼1𝜂2

2
  

𝑓1 = [
1

6
−

1

3𝑛+3
] 𝜂3 + [

𝛼1

8
−

𝛼1

6𝑛+6
] 𝜂4 + [

𝛼1
2

40
−

𝛼1
2

30𝑛+30
] 𝜂5  

Etc., 

And 

𝜃0(𝜂) = 1 + 𝛼2𝜂  

𝜃1 = −Pr [[
𝐸𝑐𝛼1

2

2
] 𝜂2 + [

𝛼2

6
] 𝜂3 − [

𝛼1𝛼2

24
] 𝜂4]  

Etc., 

The undetermined values of  𝛼1𝑎𝑛𝑑 𝛼2 are computed using the boundary conditions at infinity in (3.8). The difficulty at infinity is 

tackled by applying the diagonal Padé  approximants Boyd (1997). that approximate 

𝑓′(𝜂)𝑎𝑛𝑑 𝜃(𝜂)𝑢𝑠𝑖𝑛𝑔 𝜙15
′(𝜂)𝑎𝑛𝑑 Ω15(𝜂)𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. The numerical results of 𝛼1𝑎𝑛𝑑 𝛼2 from  lim

𝜂→∞
Φ′

15(𝜂) = 0 and 

lim
𝜂→∞

Ω15(𝜂) = 0  for selected m in the range from 4 to 8 are shown below tables . 

 

IV. RESULT ANALYSIS 

Table 4.1 

The velocity gradient ( 𝛼1 = 𝑓 ′′(0)   )    for various values of n using ADM and FUZZY ADM.                  
 

 
 
 
 

Present Result  

 

R Cortell (1970) 
 

ADM 
 

Fuzzy ADM 
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A 

 f ''(0)  f ''(0)  
 f ''(0) [7/7] [8/8] [7/7] [8/8] 

0 
0.2 

0.5 

0.75 

1 

0.62821 
0.76775 

0.88999 

0.95861 

1.05 

0.62802 
0.76597 

0.88974 

0.95378 

1 

0.62725 
0.76675 

0.88889 

0.95382 

1.066 

0.62754 
0.76664 

0.88947 

0.95012 

1.023 

0.62754 
0.76675 

0.88947 

0.95378 

1 

Table 4.2 
The velocity gradient (𝛼2 = 𝜃′(0)) for various values of n with Ec=0, Pr=1 using ADM and Fuzzy ADM 

techniques 

 
 

n 
 '(0)  '(0)  

Exact Fuzzy ADM ADM R Cortell (1970) 

0.5 
1 

3 

10 

0.52665 
0.57104 

0.52568 

0.47792 

0.56199 
0.54021 

0.52549 

0.47576 

0.56269 
0.54693 

0.52793 

0.47895 

0.52674 
0.57123 

0.52569 

0.47785 

 

Table 4.3 

The velocity gradient (  
2  
  '(0) ) for various values of Ec at n=1 and Pr=1 using ADM and Fuzzy 

ADM techniques. 

 

 
Ec 

 '(0)  '(0)  

Exact Fuzzy ADM ADM R Cortell (1970) 

0 

 

0.2 

 

0.5 

 

1 

0.57104 

 

0.19981 

 

0.49988 

 

1 

0.54021 

 

0.19979 

 

0.49957 

 

0.99998 

0.54693 

 

0.19927 

 

0.4998 

 

0.99995 

0.54693 

 

0.19929 

 

0.4998 

 

0.99995 

 

 

Table 4.4 

The velocity gradient (  
2  
  '(0) ) for various values of Pr at n=3 and Ec=1 using ADM and Fuzzy 

ADM techniques. 

 

 
Ec 

 '(0)  '(0) R Cortell 

 
(1970) Exact Fuzzy ADM ADM 

0.5 

 

0.72 

 

1 

 

2 

0.26181 

 

0.42176 

 

0.76478 

 

1.5194 

0.28264 

 

0.46637 

 

0.75348 

 

1.4984 

0.26181 

 

0.42176 

 

0.76478 

 

1.5194 

0.28894 

 

0.46964 

 

0.75567 

 

1.4995 
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Fig. 4.1 Velocity profiles f '( ) for various values of n when Pr= 1 and Ec=1 Using  '
15[ 7 / 7 ] 

. 

 

 
 

 

Fig. 4.2 Temperature profiles  () for various values of Pr at n = 3 and Ec= 1 Using 
15[ 7 / 7 ] 

. 

 

 

Fig. 4.3 Temperature profiles  () for various values of Ec at n = 1 and Pr= 1 Using 
15[ 7 / 7 ] 

. 
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Fig. 4.4 Temperature profiles  () for various values of n at Ec = 0 and Pr= 1 Using 
15[8/8 

 

From Fig.4.1 we note that when unsteadiness parameter n increases, the velocity profiles decreases. In Figs. 4.2 and 4.3 we note 

that when Prandtl Number (Pr) increases that implies the temperature decreases within the boundary layer for all values of the 

Prandtl number. This is consistent with the well-known fact that the thermal boundary layer thickness decreases with increasing 

Prandtl number. In Fig 4.4 we note that when unsteadiness parameter n increases the temperature Profiles is decreases. 

 

V. CONCLIUSION 

The Fuzzy Adomian decomposition method is applied to solve a system of two nonlinear ordinary differential  equations  with  the 

specified  boundary conditions  that describes viscous flow and heat transfer over a nonlinearly stretching sheet. The obtained solutions 

have matched with the existing numerical result. The Fuzzy Adomian decomposition method techniques are very efficient alternative 

tools to solve nonlinear models with infinite boundary conditions. 
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